Quotients of Quaternionic Holomorphic Sections

نویسندگان

  • KATSUHIRO MORIYA
  • K. MORIYA
چکیده

A surface is represented as a quotient of two quaternionic holomorphic sections. Utilizing these quotients, we explain a correspondence between superconformal surfaces and complex holomorphic null curves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quaternionic connections, induced holomorphic structures and a vanishing theorem

We classify the holomorphic structures of the tangent vertical bundle Θ of the twistor fibration of a quaternionic manifold (M,Q) of dimension 4n ≥ 8. In particular, we show that any self-dual quaternionic connection D of (M,Q) induces an holomorphic structure ∂̄ on Θ. We construct a Penrose transform which identifies solutions of the Penrose operator P on (M,Q) defined by D with the space of ∂̄-...

متن کامل

Quaternionic Connections, Induced Holomorphic Structures and a Vanishing Theorem

We classify the holomorphic structures of the tangent vertical bundle Θ of the twistor fibration of a quaternionic manifold (M, Q) of dimension 4n ≥ 8. Using a Penrose transform we show that, when (M, Q) is compact and admits a compatible quaternionic-Kähler metric of negative scalar curvature, Θ admits no global non-trivial holomorphic sections with respect to any of its holomorphic structures...

متن کامل

Deformations of Hypercomplex Structures

Twistor theory shows that deformations of a hypercomplex manifold correspond to deformations of a canonically constructed holomorphic map from the twistor space of the hypercomplex manifold onto the complex projective line. Applying Horikawa's theory of deformations of maps, we calculate deformations of compact quotients and twists of the associated bundles of quaternionic manifolds. In particu...

متن کامل

‘the Quaternionic Kp Hierarchy and Conformally Immersed 2-tori in the 4-sphere’

The quaternionic KP hierarchy is the integrable hierarchy of p.d.e obtained by replacing the complex numbers with the quaternions in the standard construction of the KP hierarchy and its solutions; it is equivalent to what is often called the Davey-Stewartson II hierarchy. This article studies its relationship with the theory of conformally immersed tori in the 4-sphere via quaternionic holomor...

متن کامل

Poles of regular quaternionic functions

This paper studies the singularities of Cullen-regular functions of one quaternionic variable, as defined in [7]. The quaternionic Laurent series prove to be Cullen-regular. The singularities of Cullenregular functions are thus classified as removable, essential or poles. The quaternionic analogues of meromorphic complex functions, called semiregular functions, turn out to be quotients of Culle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010